

Tantalum and Niobium – Innovative Materials

Tantalum and niobium metal powders have a positive impact on our daily life. With their outstanding properties, they actively shape the development of future technologies.

Tantalum is characterized by having the fourth-highest melting point of all metals, a very high density, and good thermal and electrical conductivity. Due to its ability to form an extremely thin, tough, fully dense and protective oxide layer, it is outstanding for use in capacitor applications. Niobium is a ductile, oxidation and corrosion-resistant metal which improves material properties, often leading to the increased efficiency, safety and performance of end products.

The extraordinary properties of tantalum and niobium facilitate technological progress, including the IoT (Internet of Things), AI (Artificial Intelligence), smart factories, E-Mobility, or vehicle-to-vehicle communication. These materials are our passion; to utilize their innovative potential for future trends is our mission. Our experienced team can support you in the development of efficient and powerful solutions for existing and new application fields.

About TANIOBIS	06
Highest Reliability in Future Technologies	08
Technological Expertise for Customized Solutions	09
Sustainable Material Supply	12
Our Process Excellence	13
Product Portfolio	
Oxides	14
Metal Powders	18
AMPERTEC® Chlorides	20
Compounds	22
Alloy Additives	23
AMtrinsic® Materials for Additive Manufacturing	24

Photo by Luke Chesser on Unsplash

A fundamental trend in consumer electronics is miniaturization. Smaller devices are expected to provide an ever increasing level of performance with more functions. Tantalum plays a crucial role in this trend. The miniaturization of end devices, such as smartphones or notebooks, is supported by very high-capacitance tantalum capacitors, which achieve maximum energy density with a low footprint, thanks to their unique volume efficiency.

Moreover, our newly developed tantalum paste technology offers an innovative way to achieve ultra-thin capacitor designs and the increased volumetric efficiency of capacitance.

About TANIOBIS

A leading market position with the highest level of expertise in Ta- and Nb-based materials

TANIOBIS is a leading global producer of high-quality tantalum and niobium-based materials. We have more than 60 years of experience in the development and manufacture of highperformance tantalum and niobium metal powders for capacitors and sputter targets, high-purity oxides for the optical industry, and other specialty compounds including hydroxides, chlorides, oxalates, as well as alloys such as nickel niobium.

TANIOBIS Co., Ltd., Map Ta Phut TANIOBIS Japan Co., Ltd., Mito TANIOBIS Japan Co., Ltd., Tokyo

Our highly-qualified R&D team develops specific product solutions targeted at the coming market trends, such as the Internet of Things (IoT), vehicleto-vehicle communication, smart factories and additive manufacturing technologies.

Our company operates four production facilities located in Goslar and Laufenburg, Germany; Mito, Japan and Map Ta Phut, Thailand.

During the last decades, we have developed expertise to process tantalum and niobium containing primary and secondary raw materials into high-performance powders for diverse application fields.

within the value chain

Pre-processing & concentration

raw materials by a multi-stage

process in a smelting facility

• Concentration of low-grade

Mining

Recycling

 Recycling of secondary raw materials, e.g. scraps and

Chemical/metallurgical processing

Our core competencies

- Processing of tantalum and niobium (separation, refinement, purification & morphology adjustment)
- · Output are high-tech, customized metal powders and compounds

Fabrication

- Conversion into semi-finished goods/components/parts (capacitors, sputter targets)
- · Value-addition in order to enhance metal features

End-product manufacturing

• Manufacturing of end-products (e.g. telecom infrastructure, semiconductors, turbines)

Metal plant

Smelting

Raw material sourcing

· Tantalum and niobium ores

• Slags and residues

Scrap

Chemical plant

Separation of tantalum and niobium

- Raw material digestion
- Liquid-liquid extraction process

Precipitation of precusors & products

- K₂TaF₇
- Ta₂O₅ • Nb₂O₅

• Mg reduction

Na reduction

Reduction to metal

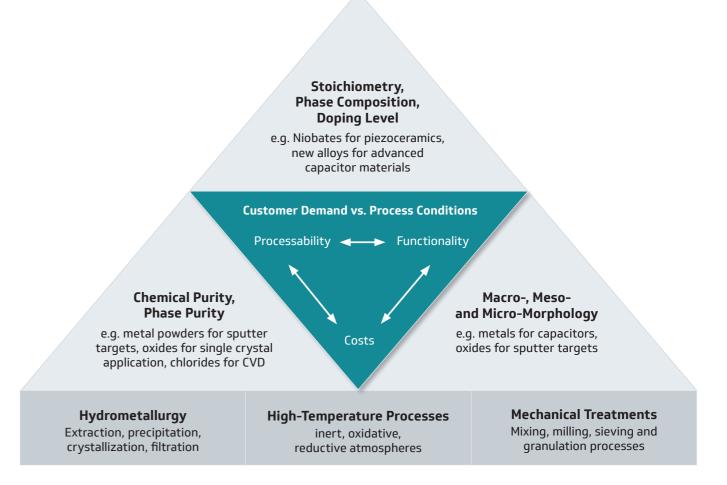
Refining powder

- Provides flowability
- Optimizes particle morphology
- Further purification (deoxidation)

Continuous quality assurance

Highest Reliability in Future Technologies

Our products are characterized by their consistent high quality. With our experience and expertise in application technology, we can provide engineered product solutions to your demanding, technically-challenging and unique requirements. We provide high-quality tantalum and niobium powders in six main product groups: capacitor materials, high-purity metal powders, specialty oxides, alloy additives, powders for additive manufacturing, and compounds & chlorides.


Technological Expertise for Customized Solutions

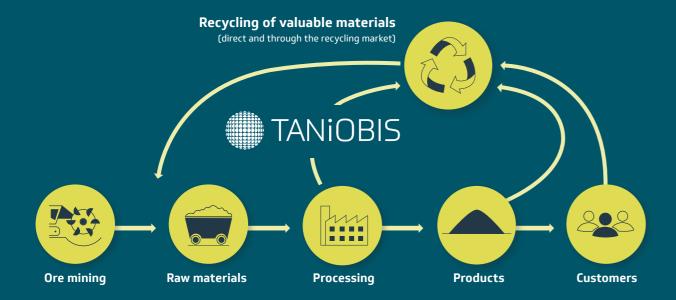
The clear majority of our tantalum and niobium products are tailor-made, based on customer specifications. The close collaboration and partnership with our customers allows us to provide materials fully adapted to their processes and is one of our core competencies. This requires the ability to adjust not only the composition, but

also the purity and morphology of the powder to achieve the required result. Our team draws upon deep material knowledge, unique equipment and strong process expertise in hydrometallurgy, high-temperature processes and mechanical treatments for the development and production of tailor-made materials.

Market segments **Key product groups Capacitor materials** Tantalum capacitor powders High CV⁽¹⁾ powders Mid CV powder · High Voltage powder High-purity Metal powders metal powders for sputter targets for sinter applications Alloy additives **Alloy Additives** • NiNb (40/60) Niobium oxide (Nb₂O₅) Specialty oxides Specialty oxides High-purity Ta₂O₅ High-purity Nb₂O₅ Powders for additive • AMtrinsic® Ta- and Nb-based manufacturing powders and their alloys Customized multinary alloys **AMPERTEC®** Chlorides Compounds & chlorides Compounds

Typical applications Notebooks, tablets, mobiles, TVs • Telecom infrastructure Connected car Semiconductors DRAM and NAND Flash • Integrated circuit chips · Jet engine and industrial gas turbines • Oil & gas infrastructure Optical lenses Piezoceramics SAW-filters Medical and dental implants Super conductivity Aerospace engine systems CVD precursor Piezo components

(1) CV refers to Capacitance and Voltage


 $8 \hspace{1.5cm} 9$

Sustainable Material Supply

Our raw material procurement strategy is based on two pillars: the responsible and ethical sourcing of primary materials, as well as the recycling of secondary materials (scraps, slags).

With unique expertise, we recover tantalum and niobium scraps from various industries (e.g. aviation), and return them into the supply chain, ensuring the sustainable use of resources.

Conflict-Free Smelter

TANIOBIS is at the forefront of the tantalum industry and we consider responsible and ethical raw material sourcing to be one of our core competencies.

Our activities are based on the OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk areas.

We apply the due diligence systems of the:

- iTSCi (international Tin Supply Chain initiative Full member)
- Responsible Minerals Initiative (RMI Full Member), and
- Responsible Supply Chain Management (RSCM internal supplier qualification system) to formalize the supervision and selection of mining, as well as trading activities.

We are a conflict-free smelter and conformant with the Responsible Minerals Assurance Process assessment protocols (RMAP) (formerly known as CFSP Compliant Smelters & Refiners) for all our manufacturing sites.

Our Process Excellence

Our innovative tantalum and niobium recycling processes allow us to reclaim tantalum and niobium from almost any type of tantalum and niobium-containing scrap or production by-products, and reintroduce them into the value chain with the same powder characteristics. Depending on the required product, our experienced team manufactures tantalum and niobium powders and compounds in the following production steps: pyro-metallurgy, hydro-metallurgy or powder metallurgy.

Oxides

Our product range features a comprehensive spectrum of tantalum pentoxide (Ta_2O_5) grades and niobium pentoxide (Nb_2O_5) grades adapted for a wide variety of applications and markets. With a deep understanding of the different requirements, in terms of chemical purity and morphology,

and thanks to intensive customer cooperation, we can improve product properties with respect to the continuously changing requirements of the specific applications.

Tantalum pentoxide Ta₂O₅	Purity min.	Physical characteristics	Main application
Chemically-Pure Grade	99.9%	D10% < 1 μm D50% < 2 μm D90% < 100 μm	CarbidesCatalystsRefractoriesAlloy additives
Ceramic Grade	99.9%	D10% < 0.5 μm D50% < 2 μm D90% < 5 μm	CarbidesCeramicsElectroceramicsPigments
High-Purity Optical Grade	99.98%	HPO 400: screened to be finer than 400 μm HPO 600: screened to be finer than 600 μm HPO 1000: not screened or screened to be finer than 1000 μm	Optical lenses
Grade LT	99.995%	D10% 0.3 - 0.5 μm D50% 1.0 - 2.0 μm D90% 5.0 - 60 μm	Optical lensesSputter targetsSingle crystals

Niobium pentoxide Nb₂O₅	Purity min.	Physical characteristics	Main application
Metallurgical Grade	99.0%		Alloy additivesSuper alloys
Chemically-Pure Grade	99.9%	D10% < 1 μm D50% < 2 μm D90% < 100 μm	CarbidesCatalystsRefractoriesPigments
Ceramic Grade	99.9%	D10% < 0.5 μm D50% < 1 μm D90% < 2 μm	CarbidesPiezoceramics ferritesMLCCPigments
High-Purity Optical Grade	99.99%	HPO 400: screened to be finer than 400 μm HPO 600: screened to be finer than 600 μm HPO 1000: not screened or screened to be finer than 1000 μm	Optical lensesCoatings

Niobium pentoxide Nb₂O₅	Purity min.	Physical characteristics	Main application
Lithium Niobate Grade (LN)	99.995%	D10% 1.0 - 1.5 μm D50% 4.0 - 7.0 μm D90% 20 - 100 μm	Single crystalHigh-purity applications
Sputter Target Grade (SPT-A)	99.995%	D10 > 15 μm D50 25 - 50 μm D90 40 - 70 μm	Sputter targets

Niobium Hydroxide

Our niobium hydroxide (Nb(OH)s) is used as a niobium precursor for the production of niobium compounds, among others for catalysis and electroceramics. As a non-calcined

powder, with a water content of 30 - 60%, Nb(OH)₅ is an ideal starting material for homogenous doping.

Nb(OH)₅	Chemical characteristics	Physical characteristics	Main application
Moist (amorphous structure)	Nb₂O₅ min. 30% F max. 0.5% Loss on ignition, max. 70% NH₄ 3 - 5%		 Niobium precursor for the production of niobium compounds, e.g. for catalysis and electroceramics
Milled	Nb₂O₅ min. 60% F max. 0.5% Loss on ignition, max. 40% NH₄ 3 - 5%	D10% < 2 μm D50% < 10 μm D90% < 80 μm	
Crushed	Nb₂O₅ min. 60% F max. 0.5% Loss on ignition, max. 40% NH₄ 3 - 5%		

Metal Powders

metal powders for capacitors used in applications, including vehicle electronics, ignition and engine control modules, as well as aerospace and defense technology.

optimized for all voltage ranges. High-voltage capacitor powders, for example, play an important role in areas where safety and low breakdown rates are highly significant, such as in medicine (Implantable Cardioverter Defibrillator – ICD) or automotive.

We provide a wide range of tantalum and niobium-based Due to their high degree of purity and high quality, our tantalum and niobium ,high-purity' powders are used in aviation and energy industry applications as alloy additives for corrosion-resistant turbine blades. In medical technology, the powders are used as We supply many different tantalum and niobium powders radiographic contrast agents and in the production of bone replacement material and implants.

> Moreover, our product portfolio includes tantalum pastes for ultra-thin electronic devices, as well as Ta- and Nb-based powders for various application technologies, like additive manufacturing.

Tantalum		Purity min.	Main application
Ta Metal	Capacitor Grade Na Reduction		Ta capacitor
	Capacitor Grade Mg Reduction		High CV Ta capacitorHigh-voltage Ta capacitorMedical devices
	Capacitor Grade Q		High-voltage Ta capacitor
	Sinter Grade		Mill productsWire
	Sputter Target Grade		Sputter targets
	AMPERTEC® Ta EB High-Purity	99.9%	Medical applications
	AMPERTEC® Ta EB TS	99.9%	Thermal spraying applications

Niobium		Purity min.	Main application
Nb Metal & NbO	Capacitor Grade NbO		Nb capacitor
	Capacitor Grade Nb Powder		High CV Nb capacitor
	AMPERTEC® Nb EB High-Purity	99.9%	Medical applications
	AMPERTEC® Nb EB TS	99.9%	Thermal spraying applications

AMtrinsic® spherical	Oxygen (ppm)	Purity min.	Main application
Spherical Ta	< 400		Powder for additive manufacturing applications
Spherical Nb	< 600		 Powder for additive manufacturing applications

AMPERTEC® Chlorides

Niobium and Tantalum Pentachloride

Our **AMPERTEC®** niobium and tantalum pentachlorides (NbCls and TaCls) are highly-reactive compounds of niobium and tantalum. Due to the reduced surface area, e.g. larger particle size, the compounds are associated with less dust formation, reduced moisture sensitivity and improved

handling in dosage. The highest purity and semiconductor grades of the AMPERTECR product range are the purest of their kind currently available on the market in large scale production.

AMPERTEC® Niobium pentachloride NbCls	Purity min.	Physical characteristics	Main application
High Purity Grade	99.93%	Particle Size: < 3 mm Description: yellow crystals Melting point: 204 °C	CatalysisCoatingMLCC
Highest Purity Grade	99.995%	Bulk density: approx. 1.7 g/cm³	CVD precursorSynthesis

AMPERTEC® Tantalum pentachloride TaCls	Purity min.	Physical characteristics	Main application
High Purity Grade	99.93%	Particle Size: < 3 mm Description: white crystals Melting point: 216 °C Bulk density: approx. 1.9 - 2.4 g/cm³	CatalysisCoating
Highest Purity Grade	99.995%		CVD precursorSynthesis
Semiconductor	99.999%		Semiconductor

Tungsten Hexachloride and Tungsten Pentachloride

Thanks to its superfine particle size and its strong reactivity, **AMPERTEC**® tungsten hexachloride or pentachloride particularly meet the special requirements of catalytic applications. Coating is another field of utilization.

AMPERTEC® Tungsten hexachloride/pentachloride WCls/WCls	Purity min.	Physical characteristics	Main application
WCI6	99.9%	Particle Size: < 2 mm Description: black-violet crystals Melting point: 282 °C Bulk density: approx. 1.2 g/cm³	CatalysisSol-GelCVD precursorSynthesis
RD WCIs*	99.9%	Particle Size: < 2 mm Description: black crystals Melting point: 248 °C	Semiconductor

Molybdenum Pentachloride

AMPERTEC® Molybdenum pentachloride MoCls	Purity min.	Physical characteristics	Main application
MoCls ¹⁾	99.9%	Particle Size : < 2 mm Description: black crystals Melting point: 194 °C ¹⁾ Bulk density: approx. 0.5 - 0.7 g/cm ³	CatalysisSol-GelCVD precursorSynthesis
RD MoCl₅ Semiconductor*, 2)	99.995%	²⁾ Bulk density: approx. 1.0 g/cm³	 Semiconductor

Tungsten Oxidetetrachloride

This is a new development within the TANIOBIS **AMPERTEC®** product range. Due to its high phase purity and low metal

impurity level makes it is the perfect candidate for catalytic and coating applications.

AMPERTEC® Tungsten oxidetetrachloride WOCI4	Purity min.	Physical characteristics	Main application
RD WOCI ₄ *	99.9%	Particle Size : < 2 mm Description: orange crystals Melting point: 211 °C	CatalysisSol-GelCVD precursorSynthesis

^{*} RD: development product

Compounds

Our **niobium ammonium oxalate (NAmOx)** is a white, crystalline powder that is stable in air and completely water-soluble. NAmOx allows the obtaining of clear solutions containing 40 - 160 g/l Nb. The powder

provides an excellent niobium solution with high homogeneity, without using organic solvents. NAmOx is therefore benificial as a precursor for the production of niobium-doped catalysts.

Niobium Ammonium Oxalate	Chemical characteristics	Solubility	Application
NAm0x	Nb min. 19% C₂O₄ typ. 50 - 65% NH₃ min. 2%	60 - 230 g/l Nb ₂ O ₅ (=40 - 160 g/l Nb at 20 - 70 °C)	 Production of catalysts, ferrites, electroceramics and pigments

In addition to the NAmOx powder, we offer **aqueous** solutions of niobium and tantalum oxalate.

Our niobium and tantalum oxalate solutions are an ideal precursor for mixtures at an atomic level.

Aqueous solution of	Chemical characteristics	Typical content	Density	Application
Nb-Oxalate	Nb≥05 typ. 90 - 270 g/l C≥04 typ. 150 - 400 g/l Cl max. 50 mg/l F max. 100 mg/l	190 g/l Nb₂0₅	1.15 - 1.40 g/cm³	 Catalytic converters, ferrites, electroceramics and pigments
Ta-Oxalate	Ta2Os typ. 150 - 200 g/l C2O4 typ. 110 - 160 g/l Cl max. 50 mg/l F max. 100 mg/l	190 g/l Ta₂O₅	1.00 - 1.30 g/cm³	Catalytic converters and electroceramics

Niobates are which consist of niobium and another metallic element. These ternary oxides materials can be used as dopants and precursors for piezoceramic materials. TANIOBIS

provides not only the displayed compounds, but also upon request other niobates with different particle morphologies and sizes.

Niobates	Chemical characteristics	Solubility	Application
KNbO₃	K 21.0 - 22.8% Nb 49.7 - 52.3% Loss on ignition max. 0.5%	Surface Area (BET) 2 - 4 m²/g D10% < 2 µm	 Doping of PZT (Lead Zirconium Titanate) piezoceramics
MgNb₂O₅	Mg 7.7 - 8.3% Nb 59.9 - 61.1% Loss on ignition max. 0.2%	D50% < 10 μm D90% < 80 μm	Precursor for PMN (Lead Magnesium Niobate) piezoceramics

Alloy Additives

Due to its high melting point and excellent oxidation and corrosion resistance, nickel niobium is a preferred component in superalloys used for parts that must withstand high temperatures. Moreover, nickel niobium compensates for high-tension stresses, as well as shocks caused by vibration and impact.

Refining steels with superalloys that contain niobium ensures optimized machine performance and fuel combustion, lower machine maintenance costs and a greater degree of safety. Nickel niobium slows material aging processes and prevents crack formation under thermal stress.

Product	Purity min.	Chemical / Physical characteristics	Main application
Nickel Niobium (NiNb)		40/60 58 - 65% Nb-content lumpy < 50mm	Alloy additives
Niobium Pentoxide Nb₂O₅ Metallurgical Grade	99.0%	Loss on ignition: max. 0.2% Tap density: 1.3 - 1.4 g/cm³ avg	Alloy additives

Nickel Niobium

- Production method: Metallothermic Reduction
- Nb nominal range: 58 65 wt%
- Available shapes: Lumps
- Typical sizes: 5 x 50 mm
- · Packaging: various

AMtrinsic® Materials for Additive Manufacturing

Based on our strong expertise in the development and manufacturing of tantalum and niobium metals and their alloys, we have extended our portfolio to include gasatomized **AMtrinsic®** spherical tantalum and niobium pure

metals and alloy powders. Our powders are characterized by excellent flowability, high tap density, spherical shape and narrow particle size distribution.

AMtrinsic® spherical	Main application
Та	 Medical implants Applications that combine high corrosion resistance with freedom of design Corrosion-resistant components and high-temperature applications in the chemical processing industries
Nb	 Corrosion-resistant components and high-temperature applications Superconductor applications
Ti/Nb/Ta	Next generation of customized medical implants
Ti42Nb	High-performance applications that require the combination of high elasticity and high strength
Ta/W	Heat and corrosion-resistant components, e.g. in aerospace applications
Nb/Ta/W/Zr (FS-85)	High-temperature application that requires high strength and good creep resistance
Nb/Hf/Ti (C-103)	High stress resistance at extreme temperatures e.g. in aerospace applications
Nb/W/Zr (Cb-752)	High-temperature mechanical properties desirable for space and aerospace applications
High-entropy alloys	Customer-specific compositions upon requestHeat and corrosion resistance

Other alloy compositions upon request

- Extremely low 0 content
- High tap density
- Spherical shape with smooth surfaces
- Very good flowability

—

Excellent processability in 3D-printing, as well as in metal injection molding

EUROPE

TANIOBIS GmbH Im Schleeke 78 - 91 D-38642 Goslar Germany

Phone: +49 (0) 5321 751-0

NORTH AMERICA

TANIOBIS USA LLC 144 Gould Street, Suite 207 Needham, MA 02494 United States

Phone: +1 617 584 6461

ASIA

TANIOBIS Japan Co., Ltd. 6F Sumitomo Fudosan Yotsuya Bldg 13-4 Arakicho, Shinjuku, Tokyo 160-0007, Japan

info@taniobis.com | www.taniobis.com

The conditions for your use and application of our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. It is therefore imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis must, at least, include testing to determine the suitability from a technical, as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by TANIOBIS GmbH. All information is given without warranty or guarantee. It is expressly understood and agreed that the customer assumes, and hereby expressly releases, TANIOBIS GmbH from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and non-binding for TANIOBIS GmbH. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent. Properties of the products referred to herein shall, as a general rule, not be classed as information on the properties of the item for sale. When ordering, please refer to the issue number of the respective product data sheet. All deliveries are based on the latest issue of the product data sheet and the latest version of our General Conditions of Sale and Delivery.

The values in this publication are typical values and do not constitute a specification.

